

Novel Solvent System for CO₂ Capture

2010 NETL CO₂ Capture Technology Meeting
Pittsburgh, PA
September 2010

ION Engineering – Company Background

- A Boulder, Colorado company
- Founded in late 2008 by co-inventors and business team
 - Core technology invented at CU (Chemical Engineering)
 - Significant start-up, industry and financial expertise
- Commercializing novel solvents for industrial gas separation processes

Multiple Markets for ION Technology

Gas Clean-up (High Pressure)

Current commercial market No "Carbon Price" required Process savings significant

Carbon Capture

(Low Pressure)

R&D market Aggressive DOE goals Increasing industry interest

ION – Project Overview

- 17 month project (Oct. 2010 Feb. 2012)
- Key activities
 - Laboratory analysis and testing
 - Simulation model validation
 - Field testing with actual flue gas
 - Economic/operational analysis for commercial scale development
- \$4.3 million project of which 71% funded by DOE

Field test site – Xcel Energy's Valmont Station Boulder, Colorado

Project participants

WorleyParsons

resources & energy

...a new (elegantly simple) solvent approach

Which Ionic Liquid?

Typical properties are important:

Non-volatile – do not evaporate

Chemically stable

Thermally stable

Non-flammable

Viscosity

But ION's focus is economics and functionality

ION – Technology Fundamentals

ION – Technology Fundamentals

Technical and Economic Benefits

Lower energy requirements

Higher solvent loading

Leaner solvent return

Smaller unit footprint

Lower cost materials

CO2 Capture Economics

ION – Technical and Economic Challenges

Compared to conventional processes...

- Absorption Section
 - Handling relatively higher viscosity materials
 - Managing heat balance
- Regeneration Section
 - Optimizing higher heat conditions for a leaner solvent return
 - Minimizing amine degradation and solvent loss
- Process Chemistry with Power Plant Flue Gas
 - Assessing effects of various contaminants
 - Validating simulation modeling with operating data

ION – Project Objectives & Methodology

Phase 1: Detailed Design (Oct 2010 – Mar 2011)

<u>Objective</u>: Develop a detailed process design for a 1-3 gpm (25-75 kW_{th}) field test unit using a validated process simulation model.

Methodology:

- 1. Evaluate solvent properties for flue gas conditions (VLE for CO_2 , N_2 , O_2 and H_2O ; physical properties; and contaminants)
- 2. Use findings to create dataset(s) for a simulation model (ProMax)
- Design, build and operate continuous system in lab (~ 3 KW_{th})
- 4. Validate model to experimental data from lab unit
- 5. Finalize detailed engineering design of field unit

ION – Project Objectives & Methodology

Phase 2: Process Operation & Evaluation (Apr 2011 – Jan 2012)

<u>Objectives</u>: Provide a technical and economic assessment for a commercial scale unit based on field tests using actual flue gas.

Methodology:

- 1. Test on-site at operating coal-fired power plant
 - Mobile "plug in" 1-3 gpm (~ 25-75 KW_{th}) integrated system
 - Flue gas tie-ins (downstream of other control technology)
- 2. Analyze data and reconcile with simulation model
- 3. Simulate commercial scale process
- 4. Determine technical and economic expectations at commercial scale

Future testing and development

- Mobile field unit offers potential for additional small-scale tests
 - Assess effects of longer duration tests
 - Determine effects of contaminant spikes
 - Monitor variations in flue gas
 - Assess design modifications for gas-fired generation
- Continue design optimization, demonstration and evaluation
 - Validate scale-up designs
 - Optimize plant integration issues energy, material flow, etc
 - Identify potential component improvements
 - Fine-tune solvent formulations

Thank You

Claude C. ("Corky") Corkadel III corky@ion-engineering.com

www.ion-engineering.com

